Anzeige

Neuartiger Biosensor soll Kontamination von Wasser aufdecken

Ein Team von Studierenden der Leibniz Universität Hannover (LUH) hat einen fluoreszierenden Biosensor entwickelt, der Antibiotika- und Schwermetallbelastungen in Wasser effizient detektiert. Der Biosensor könnte dazu beitragen, auch schon geringe Verunreinigung frühzeitig zu erkennen. Die Leistung des Teams der LUH wurde bei dem internationalen iGEM-Wettbewerb 2024 mit einer Goldmedaille ausgezeichnet.

Der iGEM Wettbewerb ist ein globales Event im Bereich der synthetischen Biologie, das Studierenden ermöglicht, innovative Lösungen für gesellschaftliche Herausforderungen zu entwickeln. Das Kürzel iGEM steht dabei für International Genetically Engineered Machine. Jedes Jahr kommen in Paris mehr als 450 Teams aus aller Welt zusammen, um neuartige Projekte vorzustellen, die weitreichende Lösungen für Herausforderungen im Bereich Gesundheit, Umwelt und Technologie präsentieren.

Ein Jahr lang haben Studierende der LUH aus den Studiengängen Biologie, Physik, Molekulare Mikrobiologie und Pflanzenbiotechnologie zusammen an dem Projekt „Hydro Guardians“ gearbeitet, das auf die Problematik der antimikrobiellen Resistenz abzielt. Der dabei entwickelte zelluläre Biosensor kombiniert Elemente aus prokaryotischen (ohne Zellkern) und eukaryotischen Zellen (mit Zellkern) und nutzt spezifische biologische Mechanismen zur Detektion: Eine Integration der sogenannten PASTA-Domain (ein Penicillin-bindendes Protein), ermöglicht die Erkennung einer bestimmten Gruppe von Antibiotika, während der Transkriptionsfaktor MTF-1 (Metal-responsive Transcription Factor-1) Schwermetalle wie Cadmium, Zink und Kupfer erkennt. Bei Bindung von Antibiotika aktiviert die PASTA-Domain eine Signalkaskade, die zu einem fluoreszierenden Signal führt, das wiederum die Anwesenheit dieser Schadstoffe deutlich macht. Für Schwermetalle wird die Reaktion durch die Aktivierung von Metall-Homöostase-Genen ausgelöst, was ebenfalls eine Fluoreszenz erzeugt und eine zuverlässige Messung ermöglicht.

Durch die Integration verschiedener spektroskopischer Messungen und eines umfassenden Modells, das die Wechselwirkungen zwischen Antibiotika, Schwermetallen und multiresistenten Bakterien in Gewässern simuliert, leistet das Team einen Beitrag zum Verständnis von Wasserbelastungen. Das mathematische Modell ermöglicht es, Parameter wie die Konzentration von Schadstoffen und Umweltfaktoren anzupassen.

Prof. Dr. Alexander Heisterkamp, Institut für Quantenoptik, Leibniz Universität Hannover
E-Mail:
heisterkamp@iqo.uni-hannover.de

iGEM-Wettbewerb 2024 (Foto: iqo/LUH)

Webcode

20241120_003

Zurück